A Highway Pavement Crack Identification Method Based on an Improved U-Net Model

نویسندگان

چکیده

Crack identification plays a vital role in preventive maintenance strategies during highway pavement maintenance. Therefore, accurate of cracks images is the key to work. In this paper, an improved U-Net network adopting multi-scale feature prediction fusion and parallel attention module was put forward better identify concrete cracks. Multiscale combines multiple features generated by intermediate layers for aggregated prediction, thus using global information from different scales. The used process decoded output fusion, which can give more weight target region image further capture contextual improve recognition accuracy. Improving bottleneck layer robustness model prevent overfitting. Experiments show that paper has significant improvement over original network. performance proposed method investigated on two publicly available datasets (Crack500 CFD) compared with competing methods literature. Using Crack500 dataset, achieved highest score precision (89.60%), recall (95.83%), mIOU (83.80%), F1-score (92.61%). Similarly, CFD high values (93.29%), (82.07%), (86.26%), (89.64%). Thus, several advantages identifying pavements ideal tool practical future work, crack types light-weighting are objectives. Meanwhile, provides new idea road identification.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Neural Segmentation Method Based on U-NET

摘要:局部麻醉技术作为现代社会最为常见的麻醉技 术,具有安全性高,副作用小等优势。通过分析超声 图像,分割图像中的神经区域,有助于提升局部麻醉 手术的成功率。卷积神经网络作为目前最为高效的图 像处理方法之一,具有准确性高,预处理少等优势。 通过卷积神经网络来对超声图像中的神经区域进行分 割,速度更快,准确性更高。目前已有的图像分割网 络结构主要有U-NET[1],SegNet[2]。U-NET网络训练 时间短,训练参数较少,但深度略有不足。SegNet 网 络层次较深,训练时间过长,但对训练样本需求较多 由于医学样本数量有限,会对模型训练产生一定影响。 本文我们将采用一种改进后的 U-NET 网络结构来对超 声图像中的神经区域进行分割,改进后的 U-NET 网络 结构加入的残差网络(residual network)[3],并对每一层 结果进行规范化(batch normalizat...

متن کامل

Automatic Pavement Crack Detection Based on Aerial Imagery

Road health information is an important indicator for assessing the status of the road in management systems. Identifying the abandonment of surfaces is an important process in maintaining roads and traffic safety, which is traditionally conducted on the basis of field surveys. Today, remote sensing methods, especially photogrammetric imaging, are presented. In this article, based on by UAVs im...

متن کامل

Pavement Crack Detection Using Spectral Clustering Method

Pavement crack detection plays an important role in pavement maintaining and management, nowadays, which could be performed through remote image analysis. Thus, edges of pavement crack should be extracted in advance; in general, traditional edge detection methods don’t consider phase information and the spatial relationship between the adjacent image areas to extract the edges. To overcome the ...

متن کامل

Crack identification based on Kriging surrogate model

Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a sche...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13127227